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Abstract – A computationally efficient approach that solves for the spatial covariance matrix along the dense particle ensemble-averaged trajectory
has been successfully applied to describe turbulent dispersion in swirling flows. The procedure to solve for the spatial covariance matrix is based on
turbulence isotropy assumption, and it is analogous to Taylor’s approach for turbulent dispersion. Unlike stochastic dispersion models, this approach
does not involve computing a large number of individual particle trajectories in order to adequately represent the particle phase; a few representative
particle ensembles are sufficient to describe turbulent dispersion. The particle Lagrangian properties required in this method are based on a previous
study (Shirolkar and McQuay, 1998). The fluid phase information available from practical turbulence models is sufficient to estimate the time and
length scales in the model. In this study, two different turbulence models are used to solve for the fluid phase – the standardk–ε model, and a multiple-
time-scale (MTS) model. The models developed here are evaluated with the experiments of Sommerfeld and Qiu (1991). A direct comparison between
the dispersion model developed in this study and a stochastic dispersion model based on the eddy lifetime concept is also provided. Estimates for
the Reynolds stresses required in the stochastic model are obtained from a set of second-order algebraic relations. The results presented in the study
demonstrate the computational efficiency of the present dispersion modeling approach. The results also show that the MTS model provides improved
single-phase results in comparison to thek–ε model. The particle statistics, which are computed based on the fundamentals of the present approach,
compare favorably with the experimental data. Furthermore, these statistics closely compare to those obtained using a stochastic dispersion model.
Finally, the results indicate that the particle predictions are relatively unaffected by whether the Reynolds stresses are based on algebraic relations or on
the turbulence isotropy assumption. 2001 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

Akq Any tensor M Transformation matrix

ak Any vector P Gaussian probability density function

C Model constant R Normalized fluctuating velocity correlation

cµ Model constant r Radial distance

d Diameter Re Reynolds number

dt Zero mean normal random variable S Source term

g Gravitational acceleration T Surrounding fluid time scale in the absence of

k Turbulent kinetic energy drift

L Integral length scale t Time

l Characteristic length scale �u Velocity vector

m Mass; Loop parameter in Frenkiel function u Axial velocity

ṁp Particle mass flow rate v Radial velocity
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vd Particle drift velocity Subscripts

W Weight function 11 and 22 Transverse directions

w Tangential velocity 33 Longitudinal direction

z Axial distance E Eulerian

Greek Symbols e Relative to an eddy

β Fluid integral length scale ratio f Fluid phase

� Difference i ith coordinate direction

�t Time increment ii Tensor withi = j

ε Dissipation rate of turbulent kinetic energy ij Tensor

µ Dynamic viscosity j j th coordinate direction

ν Kinematic viscosity L Lagrangian

φ General transported property p Particle phase; Pertaining to production

# Production term range

ρ Density r Pertaining to radial distance

ρc Correlation coefficient sf Pertaining to fluid surrounding a heavy

σ Standard deviation; Model constant particle

σij Particle spatial covariance matrix t Turbulent; Pertaining to dissipation range

η Ensemble mean particle location z Pertaining to axial distance

θ Angle of rotation φ Pertaining to theφ transported property

θ̇ Rate of rotation Superscripts

γ Model constant L Lagrangian

* Diffusion coefficient N New coordinate system

τ Time scale φ Pertaining to theφ transported property

τp Particle relaxation time ′ Fluctuations

〈 〉 Ensemble mean quantity — Time average

1. Introduction

The current effort in turbulent dispersion modeling focuses on developing reliable and efficient methods
based on turbulence models applicable to practical systems. Studies have shown that the stochastic dispersion
models which rely on a Monte Carlo procedure to represent the particle phase require about 2000 to
6000 individual particle trajectory calculations per particle size to correctly predict dispersion in isotropic,
homogeneous decaying turbulent flows (Milojevic [1]; Lu [2]). Recently, a new approach to model turbulent
dispersion of heavy particles has been developed based on Taylor’s theory (Taylor [3]) and the particle
momentum equation (Shirolkar and McQuay [4]). In this model, the spatial spread (variance) for a group
of particles is computed along the particle ensemble mean trajectory. This model, when evaluated with the
aid of experiments of Snyder and Lumley [5] and Wells and Stock [6], showed that one particle ensemble
calculation per particle size can provide excellent predictions for particle dispersion and particle velocity decay
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in isotropic, homogeneous decaying turbulence. Thus, the computational advantage of this approach is obvious
in simple flows. It has also been shown that this approach gives better overall particle predictions in isotropic,
homogeneous turbulence in comparison to certain stochastic models commonly used today (Shirolkar and
McQuay [4]). The objective of the present paper is to extend this concept, which is referred to as the Probability
Density Function Propagation (PDFP) approach, to model a complex flow involving inhomogeneities, such as
the case of swirling flows.

A large majority of particle dispersion models solve for individual particle trajectories (representing a certain
particle mass flow rate) in a Lagrangian framework. They are commonly known as Stochastic-Separated-
Flow (SSF) models because they treat the carrier phase and the particle phase separately. These models are
stochastic in nature because they rely on computing a large number of particle trajectories (Monte Carlo
method) in order to properly characterize the particle phase. These SSF models solve the particle equation
of motion, determining how the particles travel in a given flow field. The turbulent dispersion is accounted
for by estimating the instantaneous fluid velocity needed in the particle equation of motion. Based on the
method used to estimate this fluid velocity, these models can be classified as (i) models based on the eddy
lifetime concept (Gosman and Ioannides [7]; Shuen et al. [8]; Chen and Crowe [9]), and (ii) time-correlated
dispersion models (Zhuang et al. [10]; Berlemont et al. [11]; Burry and Bergeles [12]; Lu et al. [13]; Chen and
Pereira [14]). The eddy lifetime concept models sample the fluctuating part of the instantaneous fluid velocity
from a known distribution and this fluid velocity is assumed to act on the particle for a duration known as eddy-
particle interaction time. It is also assumed that the fluid velocities are independent of each other in successive
interaction times. Such assumptions oversimplify the time correlations in the turbulent velocities (Shirolkar et
al. [15]). The time-correlated models overcome the disadvantages of the eddy lifetime models by including a
fluid particle trajectory that runs directly along the (dense) particle trajectory. The fluid particle trajectory is
generated by using a Markov-chain model, which is capable of incorporating the time correlations in the fluid
fluctuating velocity (Sawford [16]; Durbin [17]). In these models, the required fluid fluctuating velocity along
the particle trajectory is then obtained with the aid of spatial correlation functions. The time-correlated models
rely on sampling of a zero-mean normal random variable to account for uncertainties in turbulence (Shirolkar
et al. [15]).

The SSF model based on the eddy lifetime concept is extensively used in two-phase flow predictions. In some
situations, the number of particle trajectory calculations for monosized particles required in the SSF model for
an invariant solution is as high as 9000 to 10 000 (Mostafa and Mongia [18]; Adeniji-Fashola and Chen [19];
Chen and Pereira [20]). In polydispersed flows, the required number of particle calculations is naturally greater
(Chen and Pereira [20,21]). Furthermore, the number of particle calculations is also strongly depended on the
nature of the coupling that exists between the particle and the fluid phase (Kohnen et al. [22]; Berlemont et
al. [23]).

In an industrial application, such as pulverized-coal combustion systems, there is a great need to correctly
account for particle dispersion, because the particle phase influences various processes like heat transfer,
pollutant formation, and fouling and slagging inside the combustor. In such systems, the coupling between
the dispersed phase and the carrier phase is quite strong. The particle spatial distribution determines the
locations in which the particle burns as it exchanges mass, momentum, and energy with the carrier gas phase.
Thus the particle dispersion phenomenon greatly influences the various gas phase properties such as velocity,
temperature, and density. The above SSF models can be easily incorporated in a comprehensive, pulverized-
coal combustion code. However, since these models rely on random sampling of certain distributions, they
require a large number of trajectory computations in order to represent the particle phase adequately. A typical
full-scale pulverized-coal combustor can require up to 106 trajectory computations (Coimbra et al. [24]),
but, such large number of particle calculations are obviously economically impractical. In practice, limited



702 J.S. Shirolkar, M.Q. McQuay / Eur. J. Mech. B - Fluids 20 (2001) 699–726

particle trajectories are computed instead of totally neglecting the dispersion phenomenon (see [24]). However,
such practices have to devise special methods to ensure the overall convergence of the flow field which is
threatened by the unsteady particle source terms introduced due to insufficient particle calculations (Shirolkar
et al. [15]; Boyd and Kent [25]). In other pulverized-coal combustion codes, a modified-deterministic approach
is used to account for the dispersed phase (Smoot et al. [26]). Although these modified-deterministic models
are computationally efficient, the quality of predictions obtained from such models is poor (Shirolkar and
Queiroz [27]).

The need to develop computationally effective dispersion models is apparent from the above discussion. In
response to this need, some investigators have attempted to develop an efficient approach based on the original
eddy lifetime concept of Gosman and Ioannides [7] (Litchford and Jeng [28]; Chen and Pereira [20]). In the
approach of Litchford and Jeng [28] the main idea is to limit the sampling requirements in the eddy lifetime
approach and, at the same time, to minimize the numerically induced noise. However, since this approach is
based on the eddy lifetime concept, it inherits its previously discussed limitations. Furthermore, this approach
also requires the Monte Carlo procedure to properly account for particle dispersion in nonhomogeneous
turbulence.

An alternative to the SSF models is to develop a method directly based on Taylor’s [3] theory on turbulent
dispersion. Such a method would solve for the instantaneous spatial dispersion of particles as they move in
the Lagrangian reference frame, and would thus preclude the need to generate large numbers of individual
trajectories while at the same time correctly accounting for turbulent dispersion. Taylor’s approach has been
successfully applied to describe turbulent motion of fluid particles, but has had limited success in modeling
dense particle dispersion. The reason for this lack of success is that the Lagrangian particle properties needed
in Taylor’s approach are difficult to obtain, either from experiments or from practical models. In the PDFP
approach of Shirolkar and McQuay [4], the required Lagrangian particle properties are estimated from the
particle momentum equations and the information available from turbulence models applicable to practical
systems. The present study demonstrates how this approach can be extended to model turbulent particle
dispersion in nonreacting, axisymmetric swirling flows. In the present study, the PDFP dispersion model is
solved in conjunction with two different practical turbulence models: the standardk–ε model, and the MTS
turbulence model. The evaluation of the PDFP model is done primarily with the help of the experimental data
of Sommerfeld and Qiu [29]. Their experiments consist of detailed measurements of a swirling, particle-laden,
two-phase flow, using a laser-based instrument. The PDFP model is also evaluated by comparing its predictions
with a SSF model based on the eddy lifetime approach.

2. Description of the modeling approaches

The present study uses the standardk–ε model and the MTS model to solve the time-averaged, steady-state
Navier–Stokes equations for an incompressible Newtonian fluid. The general form of these equations, which is
applicable to an axisymmetric swirling flow, is the following partial differential equation:
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whereφ is the transported property,̄ρ is the specific mass of the fluid,*φ is the diffusion coefficient for the
propertyφ, andSφ is a source term. The propertyφassumes various values, such as 1 for continuity,ūi for
momentum,k for turbulent kinetic energy, andε for the rate of dissipation of the turbulent kinetic energy.
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The standardk–ε model is a single time scale turbulence model; in other words, only one time scale
represents both the turbulent transport of mass and momentum and the dissipation of the turbulent kinetic
energy. According to Kim [30], using only one time scale rapidly degenerates the predictive capability of the
k–ε model for complex flow situations, such as confined swirling flows. As a result, the program in this study
was developed to provide the option of using a multiple-time-scale model for turbulence instead of the original
k–ε model. The MTS model implemented here is the same one proposed by Kim and Chen [31,32] and it is
based on a single-point closure and a simplified, split-spectrum method. In this model, the turbulent kinetic
energy spectrum is partitioned into a production range (turbulent kinetic energy of the large eddies, orkp) and
a dissipation range (turbulent kinetic energy of the fine scale eddies, orkt ). In the method developed by Kim
and Chen [32], the partitioning of the kinetic energy spectrum is variable, and the location of the partition
is determined as part of the solution. The MTS model uses four partial differential equations for turbulence
closure in order to account for production, cascade, and dissipation of turbulent kinetic energy. These are: (i)
the turbulent kinetic energy of large eddies,kp; (ii) the turbulent kinetic energy of fine scale eddies,kt ; (iii) the
energy transfer rate from large scale to fine scale eddies,εp; and (iv) the dissipation rate of the turbulent kinetic
energy,εt .

The fluid phase partial differential equations needed to solve for nonreacting, axisymmetric swirling flows,
using both thek−ε and the MTS models for closure, are summarized intable I. This table also shows the
respective model constants that will be used in the present study. The total kinetic energy of the turbulence,k, as
solved by thek−ε model is equivalent to the sum of the kinetic energies of the large scale and fine scale eddies
in the MTS model (kp + kt ). Also, the two dissipation rates,ε andεt , model the same physical phenomenon.

The fluid phase equations are solved in a staggered, nonuniform, orthogonal grid in which the coefficients are
calculated by a line-by-line, full-elliptic, Tri-Diagonal Matrix Algorithm (TDMA). A consistently formulated
QUICK scheme proposed by Hayase et al. [33] is employed to discretize the convective term in the control-
volume formulation. Also, a third-order boundary treatment is used for cells adjacent to the walls ([33]).

The momentum exchange between the fluid phase and the particle phase is accounted for by calculating
the appropriate source terms and adding them to the respective fluid phase momentum equations (seeSφ

p in
table I). The overall calculation procedure consists of the following steps: (i) set up the initial and boundary
conditions for the given problem; (ii) partially converge the fluid phase equations; (iii) calculate the particle
statistics/trajectories based on the dispersion model; (iv) calculate the momentum sources for each cell in the
computational domain; (v) add the respective momentum source terms in the governing fluid phase equations
and partially converge them; and (vi) repeat steps (iv) and (v) until overall convergence is achieved.

As indicated earlier, this paper evaluates the PDFP model for turbulent dispersion, using experimental data
for particle dispersion in a swirling flow (Sommerfeld and Qiu [29]). Shown below is a detailed description
of the present effort to model the problem of particle dispersion in axisymmetric swirling flows, assuming
turbulence isotropy. This model is also evaluated by comparing its predictions with a standard Lagrangian
dispersion model based on the eddy lifetime concept. A brief description on the eddy lifetime concept model
used here is also provided below.

2.1. The PDF propagation model for turbulent dispersion

The PDFP model used in this study is the one proposed by Shirolkar and McQuay [4]. In general, the model
solves for the particle ensemble mean position and spatial variances in turbulent flows. The ensembles mean
trajectories are based on the solution of the ensemble-averaged particle momentum equations, while the particle
positional variances are calculated by assuming turbulence isotropy. The PSI-CELL technique of Crowe et
al. [34] is used to account for momentum exchange between the two phases. The particle source terms for a
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Table I. The fluid phase equations fork–ε and MTS models.
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k–ε model:Cµ = 0.09;Cε1 = 1.44;Cε2 = 1.92

σk = 1.0; σε = 1.30;σt = 0.7
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particular Eulerian cell are calculated from the predicted number of particles in that cell. The mathematical
details are presented below.

In this model, the particles with similar physical properties and the same initial conditions are assumed to
have a Gaussian distribution in space at any given time. This assumption makes it possible to track the positional
Probability Density Function (PDF) of a group of particles rather than individual particle trajectories. For a two-
dimensional problem, the expression for the joint normal positional PDF is given in terms of the ensemble mean
particle location (ηi) and the corresponding particle ensemble covariance matrix (σij ):

P(r, z, t)= 1

2πσr(t)σz(t)
√

1− ρ2
c (t)
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where the correlation coefficient (ρc) is defined as

ρc(t) = σrz(t)

σr(t)σz(t)
. (3)

The ensemble mean particle locations needed in (2) can be obtained by numerical solution of the
corresponding particle equations of motion. The simplified particle momentum equation, which neglects the
Basset, virtual mass, Magnus, Saffman, and buoyancy forces can be written in terms of the particle relaxation
time (τp) in cylindrical coordinates:
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where the particle rate of rotation (θ̇p) is expressed as

θ̇p = wp

rp
. (4f)

The particle relaxation time (τp) in the above equations is defined in terms of particle and fluid physical
properties, and the particle Reynolds number (Rep) (Gosman and Ioannides [7]):

τp = mp

3πdpµf

1

(1+ 0.15Re0.687
p )

, (5)

where

Rep = ρf dp|�vd |
µf

, (6)

and the particle drift velocity is given by

�vd = �uf − �up. (7)

Equations (4)–(5) are valid for most practical flows where the turbulent intensities are lower than 20%, the
particle-to-fluid density ratios are greater than 200, and the particle Reynolds number is less than 1000 (Clift
et al. [35]; Shuen et al. [8]). These equations can be analytically solved over small time steps (�t), over which
the fluid velocity vector (�uf ) acting on the particle, the particle relaxation time, and the particle rotation rate
are assumed constant.
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Equations (4a)–(4e) solve for the instantaneous particle positions and velocities, but, in the present model
the ensemble-averaged particle locations are needed in (2). Consequently, the equations (4a)–(4e) are solved
for ensemble-averaged particle positions and velocities by evaluating the fluid and particle properties, such
as �uf , τp andθ̇p, for the particle ensemble. In this model, these particle properties are estimated at the present
time and held constant over the time step. For example, for the axisymmetric geometry, the fluid velocity vector
acting on the particle ensemble is approximated from the knowledge of the particle PDF a given time by the
following expression (Smith [36]):

〈uf ;i〉(t) =
∫ ∞

−∞

∫ ∞

−∞
ūf ;i(r, z)W(r, z, t)2πr dr dz, (8)

whereūf ;i is the Eulerian time-averaged fluid velocity andW is the weight function for the PDF. The Eulerian
fluid velocity in (8) is available from the fluid phase solution. The expression for the weight function for the
present geometry is (Baxter [37])

W(r, z, t) = P(r, z, t)∫ ∞
−∞

∫ ∞
−∞ P(r, z, t)2πr dr dz

. (9)

In this model, the particle ensemble is tracked in the flow field until its ensemble mean location (ηz) leaves
the computational domain. Furthermore, the interaction of the PDF with a boundary wall is approximated as
simple reflection ([37]).

The central problem in this approach is to calculate the spatial spread of the ensemble (σij ) as it moves
through the flow field. The basic equation forσij is (Shirolkar and McQuay [4])
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where the normalized Lagrangian particle correlation tensor (RL
p;ij ) is defined as
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Shirolkar and McQuay [4] have shown that the Frenkiel functions (Frenkiel [38]) adequately model the
tensor in (11). Thus

RL
p;ij (t1, t2) = exp

[ −|t1 − t2|
(m2 + 1)τp Lij

]
cos

[
m|t1 − t2|

(m2 + 1)τp Lij

]
, (12)

wherem is a modeling parameter, referred to in the open literature as the negative-loop parameter (cf. [4]), and
τp Lij

is the particle Lagrangian time scale tensor.

The equation (10) can be numerically integrated, using (12), along the ensemble trajectory if the estimates
for the particle Lagrangian time scale tensor (τp Lij

) and the particle fluctuating velocity variances at the present
time (〈u′2

p;i〉) are known for the ensemble. The following sections show how these two particle properties
are estimated for particle dispersion in axisymmetric swirling flows. Section 2.1.1 first discusses how the
momentum source terms (Sφ

p ) and particle Eulerian statistics are computed.
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2.1.1. The particle Lagrangian time scales

Shirolkar and McQuay [4] have conducted detailed analysis regarding the Lagrangian particle time scales
required in this approach. This section presents how their equations are adapted for the present problem.

The model of [4] states that

τp Lij
= max(τp, τsf Lij

), (13)

whereτsf Lij
is the surrounding fluid time scale tensor. For isotropic turbulence, this tensor is expressed by the

following equations ([4]):

τsf L11 = τsf L22 =
T LfE33(

√
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L2
f E33

+ T 2v2
d

, (14a)

and

τsf L33 = T Lf E33√
L2

f E33
+ T 2v2

d

, (14b)

whereT is the fluid integral time scale seen by the heavy particle in the absence of drift velocity andLf E33

is the fluid integral length scale of the longitudinal spatial velocity correlation of the Eulerian flow field. The
expressions forT andLf E33 are available in terms of a length scale ratio (β), the particle physical properties,
and the turbulence characteristics of the flow (see [4]). All the fluid phase properties needed to computeT and
Lf E33 are evaluated for the particle ensemble using expressions analogous to (8). It is important to note that
the coordinate directions in (14) correspond toi = 1 and 2 for the transverse direction, and toi = 3 for the
longitudinal direction; both are relative to the particle drift velocity.

In axisymmetric swirling flows, because of three forces (gravity, centrifugal and Coriollis) that simultane-
ously act on the particle at any instant of time, the particle drift direction continually changes from one region
of the flow to another. Thus the equation (10) must be solved in a coordinate system that is rotated to aligni = 3
with the particle drift velocity.Figure 1pictorially illustrates this rotation of the coordinate system, showing the
particle’s movement in discrete steps from A to B to C in the fixedz−r coordinate system. The figure shows
how the particle moves relative to the fluid particle that was initially located at the particle mean location. Due

Figure 1. Transformation of coordinate system fromz−r to 3–1 as the dense particle moves in discrete steps.
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to the two-dimensional nature of the present problem, the figure shows the two new coordinate directions (i = 1
and 3) in ther−z plane.

At each time step, the drift velocity for the particle ensemble can be computed by using ensemble-averaged
velocities in (7). This determines the direction of the particle’s drift for that time step. All the relevant vectors
and tensors needed to solve (10) for that time step are rotated in the new coordinate system by use of the
following equations:

aN
k = ajMjk, (15a)

AN
kq = AjiMjkMiq, (15b)

where the superscript N refers to the new coordinate system, andM is the transformation matrix. The expression
for the transformation matrix is given in terms of the angle of rotation (refer tofigure 1):

M =
[

cosθ −sinθ
sinθ cosθ

]
. (16)

After computing (10), all the vectors and tensors are rotated back to the original coordinate system by using
the transformation matrix given in (16) withθ substituted by−θ . This procedure is repeated at each time step
until the ensemble mean particle location leaves the computational domain.

2.1.2. The particle variances calculation

The equation for the ensemble-averaged, particle-fluctuating velocity, covariance tensor is given by
Shirolkar ([39]):

d

dt

〈
u′
p;iu

′
p;j

〉 + 2

τp

〈
u′
p;iu

′
p;j

〉 = 1

τp

(〈
u′
f ;iu

′
p;j

〉 + 〈
u′
f ;ju

′
p;i

〉)
. (17)

This equation assumes that the centrifugal and the Coriollis forces primarily influence the particle’s mean
motion, and their contributions in (17) can therefore be neglected. Equation (17) can be easily solved along the
ensemble trajectory, provided that the fluid-particle correlation terms (〈u′

f ;iu′
p;j 〉) are known at each time step.

The differential equation for〈u′
f ;iu′

p;j 〉 can be derived in terms of the particle relaxation time, the surrounding
fluid time scale, and the ensemble-averaged, fluid-fluctuating velocity, covariance tensor (Shirolkar [39]):

d〈u′
f ;iu′

p;j〉
dt

+
(

1

τp
+ 1

τsf Lii︸ ︷︷ ︸
No summation
intended here

)〈
u′
f ;iu

′
p;j

〉 = 1

τp

〈
u′
f ;iu

′
f ;j

〉
. (18)

The fluid tensor on the right-hand side of (18) can be obtained for the particle ensemble from the time-averaged
fluid phase solution by using the weight function as shown in (8). Note that because of the turbulence isotropy
assumption in this model, the time-averaged fluid tensor takes the form

u′
f ;iu′

f ;j =
{

2
3k; for i = j ,
0; for i �= j ,

(19)

wherek is the turbulent kinetic energy (refer totable I).

Equation (18) is solved in the new coordinate system (refer tofigure 1), followed by (17). The variances
required in (10) can be obtained by solving for the casei = j in (17). However, due to the constant rotation of
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the coordinate system and the nonisotropic nature of the tensor in (17), it is also necessary to solve (17) for the
casei �= j .

2.1.3. Calculations of the momentum source terms

The unique feature of the present model is that for each time step, momentum source terms are calculated for
each and every Eulerian computational cell. This is achieved by distributing the particle momentum source for
each time step according to the instantaneous spatial distribution of the particles. Mathematically, this translates
into

Sφ
p(i, j) = ∑

k

∑
t

ṁp;k�uφ
t

∫
�zi

∫
�rj

W(rj , zi, t)2πr dr dz, (20)

whereṁp;k is the particle mass flow rate for thekth particle ensemble;�u
φ
t is the velocity change duringt th

time step;i andj refer to a particular Eulerian computational cell with the dimensions�zi and�rj .

In the SSF models, the momentum sources at each time step are added to the Eulerian cells along the particle
trajectory. Therefore, such models rely on computing a large number of particle trajectories to adequately
represent the particle phase. However, in the present model it is sufficient to track a few particle ensembles to
properly distribute the sources.

2.1.4. Eulerian particle velocity statistics – The Markov-chain model

The PDFP model in its original form is not suited to compute the particle Eulerian statistics, such as time-
averaged velocity and root-mean-square (rms) fluctuating velocity, which are available from the experiments.
This study develops a method of generating the particle statistics that are required for comparison with the
experimental data. This procedure of generating statistics is based on the exact same concepts as the original
model; thus, it is possible not only to validate the basic principles of the PDFP approach, but also the procedures
developed in this study to estimate various parameters, such as the particle Lagrangian time scales and the
particle velocity variances.

A procedure to calculate individual particle trajectories is to solve for time-averaged particle velocities and
mean particle locations by using time-averaged fluid phase velocities in equations (4). The instantaneous
particle velocity vector and the particle position vector can be then obtained using the Markov-chain model
that follows:

up;i(t) = ūp;i(t) + u′
p;i(t), (21a)

u′
p;i(t) = RL

p;ii(�t)u′
p;i(t −�t) + dti , (21b)

d2
ti

= u′2
p;i

(
1− (

RL
p;ii(�t)

)2)
, (21c)

xp;i(t) = xp;i(t − �t) + (
up;i(t) + up;i(t − �t)

)�t

2
, (21d)

wheredti is a zero mean normal random vector independent ofu′
p;i(t−�t). The variance ofdti is given in (21c).

It should be noted that (21b) and (21c) are valid in the principal axis coordinate reference frame of the tensor
RL

p;ij , and no summation is intended for the ‘i’ indexes in (21b) and (21c).

The principal axis coordinate frame forRL
p;ij is the previously discussed reference frame, which is rotated to

align axis ‘3’ with the particle drift velocity (seefigure 1). The particle drift direction can be established by using
time-averaged velocities in (7). Once this is achieved, the time-averaged, particle-fluctuating velocity variance
needed in (21c) can be obtained from the solution of the time-averaged equivalent of equations (17) and (18).
These equations are also solved in the new reference frame. Thus, it is possible to solve for instantaneous
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particle velocities (21a) and positions (21d) at discrete time steps. It is interesting to observe that unlike
other stochastic models, this approach accounts directly for the time correlations in the particle-fluctuating
velocities (21b).

In the present method, a large number of particle trajectories are tracked in the completely converged fluid
flow field to calculate the Eulerian velocity statistics needed for comparisons with the experimental data. The
above Markov-chain model is known to reproduce the solution of (10) when the dispersing particles are fluid
elements. For example, several investigators have shown the equivalence between the Markov-chain model and
the solution of (10), when studied for a simple case of point-source (fluid) particle dispersion in a stationary,
homogeneous flow (Hanna [40]; Lamb et al. [41]; Reid [42]; Burry and Bergeles [12]; Shirolkar et al. [15]).
Comparing the statistics obtained using this method with experiments is an indirect but valid procedure to
evaluate the original PDFP approach.

2.2. The Lagrangian dispersion model based on eddy lifetime concept

The SSF model used in this study is conceptually similar to other eddy lifetime models applied to
axisymmetric swirling flows (Azevedo and Pereira [43]; Sommerfeld et al. [44]). In this SSF model, the
eddy lifetime and the eddy size needed to estimate the eddy-particle interaction time is obtained for the local
turbulence properties as follows:

τf L = 0.3
k

ε
, (22a)

le =
(

2

3
k

)0.5

τf L, (22b)

where the constant ‘0.3’ in (22a) is based on the computer optimization study of Milojevic [1], who used the
experimental data of Snyder and Lumley [5] to determine its value.

The eddy lifetime model implemented here is not limited to sampling the fluctuating fluid-velocity vector
that acts on the particle during a particular time step from equation (19), which assumes turbulence isotropy.
This model has the option of sampling these fluctuating velocities from the estimates for Reynolds stresses
(u′

f ;iu′
f ;j ). These estimates are based on a set of second-order algebraic relations (Rodi [45]):

u′
f ;iu′

f ;j = 2

3
kδij + k

#/ρ̄ − ε +C ′
1ε

×
[
(1− γ1)

(
Pij − 2

3
δij#/ρ̄

)
− γ2k

(
∂ūf ;i
∂xj

+ ∂ūf ;j
∂xi

)
− γ3

(
Dij − 2

3
δij#/ρ̄

)]
, (23a)

where

Pij = −
(
u′
f ;ju′

f ;k
∂ūf ;i
∂xk

+ u′
f ;iu′

f ;k
∂ūf ;j
∂xk

)
(23b)

and

Dij = −
(
u′
f ;ju′

f ;k
∂ūf ;k
∂xi

+ u′
f ;iu′

f ;k
∂ūf ;k
∂xj

)
. (23c)

The above model constantsC ′
1, γ1, γ2, andγ3 are set at 1.8, 0.76, 0.18, and 0.11, respectively (Picart et al. [46]).

These relations are derived for axisymmetric swirling flows (Shirolkar [39]). They are solved prior to the
particle calculations, using a predictor-corrector algorithm recommended by Picart et al. [46].
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The particle-wall collisions are modeled as simple reflections. It is assumed that the particles do not lose
any momentum in the velocities parallel to the wall. However, a coefficient of restitution (0.9) is applied in
the reflected velocity normal to the wall (Azevedo and Pereira [43]). This particle-wall collision model is also
employed in the Markov-chain model. Other details on the eddy lifetime model used here can be found in
Coimbra et al. [47].

3. Results from the model validation study

The experiments of Sommerfeld and Qiu [29] involved the measurement of particle statistics in a cylindrical
reactor. The rector configuration is shown infigure 2, which illustrates a central, particle-laden, primary jet and a
coaxial, swirling, secondary jet entering the test section. The figure also shows the coordinate directionsz andr .
The reactor is modeled assuming axisymmetry. The dimensions of the reactor and the inlet flow conditions are
summarized intable II.

In the simulations, experimental profiles available atz = 3 mm were used as inlet conditions. The gas phase
equations were solved on a 100× 75 grid. The zero-gradient outlet boundary condition was set atz = 1.0 m
(Sommerfeld et al. [44]). The inlet kinetic energy and the dissipation rate for thek–ε model were specified as
(Sommerfeld and Wennerberg [48])

Figure 2. Illustration of the experimental setup used by Sommerfeld and Qiu [29].
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Table II. Geometric and inlet conditions for the experiments of Sommerfeld and Qiu.

Geometric Parameters (referfigure 2)

D1 (mm) 32

D2 (mm) 38

D3 (mm) 64

D4 (mm) 194

L (m) 1.5

Inlet Conditions

Primary Air Flow Rate (g/s) 9.9

Secondary Air Flow Rate (g/s) 38.3

Inlet Reynolds Number (based onD3) 52400

Swirl Number 0.47

Particle Mass Flow Rate (g/s) 0.34

Particle Loading 0.034

k = 1

2

(
u′2
finlet

+ v′2
finlet

+w′2
finlet

)
, (24a)

ε = cµk
3/2

0.03D
, (24b)

whereD is the characteristic dimension of the inlet flow passage. For the MTS model, a highly non-equilibrium
condition was used to estimate the inlet turbulence quantities (Chen [49]):

kp = kt = 0.5k, (25a)

εp = 0.5εt = 0.5ε, (25b)

wherek and ε are given in (24). This study found that using (25) as an inlet condition for the turbulence
quantities in the MTS model gave the best results compared with other possible conditions, such askp/kt = 4.0
andεp/εt = 1.0.

The particles used in the experiments were solid glass beads (ρp = 2500 kg/m3). The inlet particle size
distribution approximated the following log-normal distribution (Sommerfeld and Wennerberg [48]):

f (dp) = 1√
2πσdp

exp
(−(lndp − lndm)

2

2σ 2

)
, (26)

whereσ 2 = 0.18 anddm = 44.3 µm. The above size distribution was used to determine the percentage of
particles present in 10 equal size bins. Thus, for the purpose of modeling, the particle phase was represented
by 10 different monosized particles with the appropriate mass fractions.

In the PDFP model, each particle calculation involved computing 10 particle ensembles (corresponding to
the ten particle sizes) with a specified initial mean location and initial variance. Because experimental data
showed that the inlet particle distribution was fairly even across the primary tube, the initial mean and the
lateral variance were determined from a uniform distribution function (Papoulis [50]). At the inlet location,
the fluid phase properties needed for the particle ensemble were weighted by using this uniform distribution
function.

The loop parameter in (12) and the length scale ratio needed to estimate the time and length scales in (14)
were based on the findings of Shirolkar and McQuay [4]. The particles used in the experiments had a mean
Stokesian response time of 15.6 msec and were subjected to external forces, such as gravity. Therefore, the loop
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parameter was set equal to 1, as the particles were expected to be influenced by the crossing trajectories effects
(CTE). The length-scale ratio (β) was set equal to 0.39; this value gave the best predictions when compared with
the experiments of Snyder and Lumley [5] (refer to results from Shirolkar and McQuay [4]). This choice ofβ

is also consistent with the constant used to determine the fluid Lagrangian time scale in several time-correlated
dispersion models (Berlemont et al. [11]; Burry and Bergeles [12]; Lu et al. [13]; Chen and Pereira [14]).

Burry and Bergeles [12] have studied the influence of time step (�t) on the predicted dispersion in
homogeneous turbulence. They have showed that using time steps as high as 10 times the corresponding
Lagrangian time scale can correctly account the turbulent dispersion. However, due to the complex nature
of the present flow, the particle ensemble was restricted to cross only one local Eulerian computational cell at
each time step. It was observed that, with such restriction, the time step in the PDFP model was always less
than twice the particle Lagrangian time scale (τp L11). As expected, the predictions were practically unaffected
(<1%) by using time steps as low as 0.1 times the particle Lagrangian time scale.

In the PDFP model it was observed that because of the constant rotation of the coordinate system, the
correlation coefficient (ρc) in (3) acquired finite but negligible values (∼10−2). Therefore, the coefficient was
neglected for the purpose of calculating the weight function.

In the SSF model, the inlet mass flux measurements available at five distinct radial locations were used to
determine the required number of initial particle trajectories starting from the primary tube. It was observed that
a minimum of 340 particle trajectories originating from five distinct starting locations were required to achieve
conformity with the measured inlet mass flux. Thus, for the SSF model, considering 10 discrete particle sizes,
each particle calculation involved a total of 3400 trajectories. Similar to other models, the time step in the
SSF model was set equal to the minimum of (i) the time required to cross one local Eulerian cell, and (ii) the
eddy-particle interaction time.

3.1. Results from the preliminary studies

Preliminary studies were performed using thek–ε model for the gas phase, coupled with the two different
models for the particle phase. The primary objectives were (i) to compare the computational efficiency of the
two dispersion models, and (ii) to design an effective procedure that would validate the models used in this
study, with particular emphasis on the PDFP approach. These two issues are discussed below.

Figures 3(a)and3(b)depict the gas velocity vectors and particle trajectories predictions for the present case.
Figure 3(a)shows the ensemble mean particle trajectories predicted by the PDFP model. As explained earlier,
this model also predicts the spatial spread (variances) along these mean trajectories. Thus, a small number of
particle ensembles are sufficient to properly distribute the particle momentum source terms to the gas phase. In
contrast to the PDFP model, the SSF model relies on computing a large number of particle trajectories in order
to adequately represent the particle phase. This can be seen infigure 3(b), which shows a typical SSF model
trajectory prediction of 100 particle trajectories.

Figure 3shows that the main characteristics of a swirling flow are the central recirculation zone (CRZ) and
the external recirculation zone (ERZ). In this study it was observed that the presence of particles influences the
predicted end points of the CRZ. For example, thek–ε model predicts that without the influence of particles,
the CRZ extends from 77 mm to 284 mm. Whereas, by accounting for the presence of particles using the
PDFP approach, the CRZ extends from 84 mm to 288 mm. Thek–ε model when used in conjunction with the
SSF particle model, predicted the end points to be 83 mm and 285 mm. It thus appears that the presence of
particles has some measurable effect on the upstream gas phase predictions despite low particle loading (refer
to table II).
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(a)

(b)

Figure 3. Predicted particle trajectories and gas velocity vectors in a swirling flow: (a) the particle ensemble trajectories obtained from the PDFP model
coupled with thek−ε model for gas phase, and (b) the individual particle trajectories obtained from the SSF model coupled with thek−ε model for gas

phase.

In this study it was found that 3400 particle trajectories per particle calculation and a total of 3 particle
calculations were sufficient in the SSF model. Any further increase on the number of particle trajectory
calculations had virtually no effect on the gas phase predictions. The total number of particle trajectories in
this case were very small considering that the number of trajectories per particle size per starting location
required to properly account for particle dispersion using a SSF model ranges from 2000 to 5000 (Baxter [37]).
According to these estimates, for 10 discrete sizes and 5 distinct starting locations, a minimum of 100 000
particle trajectories would be needed to properly account for particle dispersion. The small number of particle
trajectory calculations required in this case to measure the influence of particles on the gas phase predictions is
due mainly to the very low particle loading.

The PDFP model also required a total of 3 particle calculations (a total of 30 ensembles). As in the case of the
SSF model, any further increase in the number of particle calculations in the PDFP model had an insignificant
effect on the gas phase predictions. The total CPU time on a HP UNIX workstation (715/64 SPU) for the PDFP
model per particle calculation (i.e., 10 ensembles) was 0.83 min. Whereas, the SSF model required about 2.14
min per particle calculation (i.e., 3400 trajectories). Thus, even in the case of very low particle loading, the
PDFP approach reduces the particle computational time by more than half compared to the SSF model. The
computational advantage of the PDFP model is expected to be very significant in situations where the particles
have a greater impact on the carrier phase.

The computational burden in the PDFP approach is concentrated in calculating the weight function in (9).
Theoretically, the assumed Gaussian shape for the particle ensemble is appropriate (Litchford and Jeng [51]).
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However, computationally it is costly compared to other shapes, such as the uniform or the isosceles triangle
PDF’s. Litchford and Jeng [51] studied their statistical dispersion model sensitivity to the shape of the particle
positional PDF. Their results indicate that, in comparison to the Gaussian PDF, the isosceles triangle PDF
provides improved computational efficiency without sacrificing numerical accuracy. This result was later
confirmed by Chen and Pereira [20] while studying numerical predictions for a confined evaporating spray.
Such practical approximations would also further benefit the computational efficiency of the PDFP approach.

The above discussion indicates the indubitable potential of the PDFP approach in efficiently distributing the
particle source terms. However, it must still be determined whether or not the present method can correctly
account for the dispersion phenomenon. This can be achieved by comparing the model predictions with the
experimental data. The PDFP model can predict Lagrangian particle statistics, and these predictions can be
compared directly with experiments that also measure Lagrangian statistics (for example, experiments of
Snyder and Lumley [5], and Wells and Stock [6]). However, the particle statistics available from the experiments
of Sommerfeld and Qiu [29] are the mean and the rms fluctuating velocity radial profiles at several different
axial locations inside the reactor. Consequently, it is not possible to compare the PDFP model predictions
directly with these Eulerian particle statistics, and the present study thus takes a two-step approach to validate
the PDFP model: (i) evaluate the gas phase results obtained by using the PDFP model to account for the
presence of particles; and (ii) evaluate the Eulerian particle velocity statistics predicted by the Markov-chain
model. It should be noted that as previously discussed, the Markov-chain model is equivalent to the PDFP
approach. This study also compares the SSF model predictions with the Markov-chain model predictions and
the experimental data.

The results from this model-validation study are presented in three sections. In the first part, the gas phase
results that were obtained by using the two different turbulence models and the two dispersion models are
discussed. The discussion focuses mainly on the predictions obtained using the two turbulence models coupled
with the PDFP model for the particle phase. The predicted gas phase results are evaluated with the experimental
data. In the second part, the particle mean velocities predicted using the Markov-chain model are compared with
the experiments. In this section the particle statistics are calculated in two different gas flow fields – thek–ε and
the MTS model predictions coupled with the PDFP model for the particle phase. In the third section, the particle
velocity statistics (mean and rms fluctuating velocities) that were obtained by using both the Markov-chain
model and the SSF model are compared with the experimental data. The gas phase results used to generate
these statistics are the same as those obtained by using the MTS model coupled with the respective particle
models.

The predicted radial profiles for gas and particle velocities (both mean and rms fluctuating velocities) are
compared with the experimental data at several axial locations. The figures presented below typically show
predictions atz = 3 (which is used as the inlet condition for the models), 52, 112, 155, 195, and 315 mm. Note
that, the locationsz = 112, 155, and 195 mm are located inside the CRZ. The experiments of Sommerfeld
and Qiu [29] were previously simulated at the fifth workshop on two-phase flow predictions (refer to case 3 in
Sommerfeld and Wennerberg [48]). The discussion that follows makes references to the predictions presented at
this workshop, in particular to the predictions of Azevedo and Pereira [43], and Ando and Sommerfeld [52]. The
workshop simulation results were presented for the axial stations ofz = 52, 155, 195, and 315 mm. Sommerfeld
et al. [44] have also simulated these experiments and presented their particle phase predictions atz = 52, 112,
195, and 315 mm.
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Figure 4. Comparison between the experiments and the predicted centerline gas axial mean velocity. Experiment:�. Simulation: ——–,k−ε model
with PDFP model; – – –, MTS model with PDFP model.

Figure 5. Comparison between the experiments and the predicted gas axial mean velocity at different axial locations. Experiment:�. Simulation:
——–, k−ε model with PDFP model; – – –, MTS model with PDFP model.

3.2. Fluid phase results

The fluid phase equations were solved using the two different turbulence models, and in both cases the PDFP
model was used to account for the presence of the particle phase. As indicated before, the region of interest in
swirling flows is the CRZ. Thek–ε model predicted the CRZ to extend from 84 mm to 288 mm, while the MTS
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Figure 6. Comparison between the experiments and the predicted gas radial mean velocity at different axial locations. Experiment:�. Simulation:
——–, k−ε model with PDFP model; – – –, MTS model with PDFP model.

model predicted it to be from 104 mm to 350 mm. Experimental data indicate that the CRZ extended from
approximately 100 mm to 330 mm (seefigure 3in Sommerfeld et al. [4]). Thus, it appears that the MTS model
does a better job at predicting the CRZ. In order to confirm this observation, the gas centerline axial predicted
mean velocity is compared with the experimental data infigure 4. The figure shows predictions from both the
turbulence models. It is obvious from the figure that the MTS model predictions are better compared to thek–ε
model.

Figure 5 compares the gas axial mean velocity predictions at several different axial locations with the
experimental data. The solid lines in this figure show thek–ε model predictions, and the dashed lines represent
the MTS model predictions. The figure shows that both models compare reasonably to the predictions; however,
in regions close to the centerline and near the wall, the MTS model appears to predict the velocities more
accurately than thek–ε model.

Figure 6 compares the gas radial mean velocity predictions with the experiments. The figure shows that
both models compare favorably with the experiments. The slight discrepancy between the predictions and the
experimental data at the near-wall location forz = 112 mm can also be observed in Sommerfeld et al. [44].
The gas tangential mean velocity predictions are compared with the experimental data infigure 7. The figure



718 J.S. Shirolkar, M.Q. McQuay / Eur. J. Mech. B - Fluids 20 (2001) 699–726

Figure 7. Comparison between the experiments and the predicted gas tangential mean velocity at different axial locations. Experiment:�. Simulation:
——–, k–ε model with PDFP model; – – –, MTS model with PDFP model.

shows that the models slightly underpredict the gas tangential velocity inside the CRZ. This discrepancy is also
observed in [44].

In summary, the predicted gas mean velocities using both the turbulence models compared favorably to the
experiments. The MTS model can more accurately predict the size of the CRZ, and is also superior to thek–ε
model in predicting gas axial mean velocities near the centerline and the reactor wall.

Both the particle dispersion models used in this study rely on the gas rms fluctuating velocity predictions
(refer to (19) and (23)), but the dependence of the SSF model on these predictions is more direct because it
relies on these predictions to determine the instantaneous fluid velocity vector acting on the particle. Thus the
predictions shown below are for turbulence models that use the SSF model for the particle phase. The algebraic
relations used in this study are solved prior to the trajectory calculations in the SSF model.

Figure 8compares the predictions obtained using the algebraic relations for the three components of the gas
rms fluctuating velocity with the experimental data. The solid lines in the figure represent the predictions that
were based on thek–ε model, and the dashed lines represent those that were based on the MTS model. The
figure also shows thek–ε model predictions that assume gas phase isotropy (i.e., equation (19)). It is apparent
from this figure that the models generally underpredict the rms fluctuating velocities, but, the algebraic relations
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Figure 8. Comparison between the experiments and the predicted gas rms fluctuating velocities at three different axial locations. Experiment:�.
Simulation: ——–, Algebraic relations (k−ε model with SSF model); – – –, Algebraic relations (MTS model with SSF model); — - —, Turbulence

isotropy assumption (k−ε model with SSF model).

based on thek–ε model appear to give the best predictions. The underprediction of the gas fluctuating velocity
has also been observed by several other investigators (refer to case 3 in Sommerfeld and Wennerberg [48]).

3.3. Evaluation of the Markov-chain model

The particle statistics presented in this section are calculated in two different gas flow fields. Predictions
for both, the first gas flow field calculated using thek–ε model and the second using the MTS model, are
shown infigures 5–7. The particle trajectories are generated in these flow fields by using the Markov-chain
technique. More than 150 000 particles are tracked in the flow to calculate the particle average velocities, and
the particle rms fluctuating velocities. The results for average velocities are presented in this section; the rms
velocity results are presented in the next section.

The particle axial, radial, and tangential mean velocity predictions are compared with the corresponding
experimental data infigures 9, 10, and11, respectively. The solid lines in these figures indicate predictions
obtained with thek–ε model for the gas phase, whereas, the dashed lines represent the predictions obtained
with the MTS model for the gas phase.Figure 9shows that the model predictions for the particle axial velocity
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Figure 9. Comparison between the experiments and the Markov-chain model predictions, in two different gas fields, for the particle axial mean velocity
at different axial locations. Experiment:�. Simulation: ——–,k−ε model with PDFP model; – – –, MTS model with PDFP model.

compare very well with the experiments. The figure also indicates that, similar to the gas phase results, the
particle predictions obtained with the MTS model for the gas phase are better compared to thek–ε model,
especially in the near-wall region. The particle axial mean velocity predictions based on thek–ε model as
shown infigure 9, are remarkably similar to the SSF model predictions of Sommerfeld et al. [44]. It should
be noted that Sommerfeld et al. computed their particle statistics in a gas flow field obtained by using thek–ε
model for turbulence.

The model comparisons shown for the present case during the 5th workshop on two-phase flow predictions
were based almost exclusively on thek–ε model for gas phase (refer to case 3 in Sommerfeld and
Wennerberg [48]). At that workshop, the SSF model of Azevedo and Pereira gave the best predictions for
particle mean velocity in the region near the wall inside the CRZ. Their near-wall predictions were very close
to the correspondingk–ε model predictions shown infigure 9. However, unlike the present predictions using
the k–ε model for gas phase, the model of Azevedo and Pereira generally underpredicted the particle axial
velocity inside the CRZ. The particle mean velocity predictions of Ando and Sommerfeld (also an SSF model),
presented at the workshop, were quite similar to the present predictions that used thek–ε model for gas phase,
except in the near-wall region. The model of Ando and Sommerfeld severely underpredicted (about 20% more
than present simulations) the particle velocity in the region near the wall.
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Figure 10. Comparison between the experiments and the Markov-chain model predictions, in two different gas fields, for the particle radial mean
velocity at different axial locations. Experiment:�. Simulation: ——–,k−ε model with PDFP model; – – –, MTS model with PDFP model.

Figure 10shows that the model predictions compare satisfactorily with the experimental data for the particle
mean radial velocity except at the axial locationz = 112 mm. Like the gas phase results (figure 6), the velocity
at this axial location in the near-wall region is also underpredicted by the particle model. This discrepancy is
likewise reflected in the predictions of Sommerfeld et al. [44]. Note that, the results at this axial location were
not reported in Sommerfeld and Wennerberg [48].

Figure 11shows that the model underpredict the particle mean tangential velocities in the near-wall region
inside the CRZ; this is a direct reflection of the discrepancy observed in the gas phase predictions (refer to the
discussion onfigure 7). Once again, these predictions are consistent with those of Sommerfeld et al. [44].

In summary, the particle mean velocity statistics based on thek–ε model for gas phase are consistent with
the best predictions for this case in the current literature. The axial mean velocity predictions based on the
MTS model for gas phase are an improvement over the correspondingk–ε model predictions, especially in the
near-wall region inside the CRZ. The mean gas flow results have a direct effect on the particle mean velocity
statistics. Discrepancies in the gas phase results are also reflected in the particle results. Finally, it appears that
the predictions based on the concepts developed in this study to model the dispersion phenomenon are similar
to those available from the stochastic models based on the eddy lifetime approach.
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Figure 11. Comparison between the experiments and the Markov-chain model predictions, in two different gas fields, for the particle tangential mean
velocity at different axial locations. Experiment:�. Simulation: ——–,k−ε model with PDFP model; – – –, MTS model with PDFP model.

3.4. Direct comparison of the two approaches for dispersion modeling

The results presented in the previous section appear to indicate that the particle velocity statistics obtained
by using the Markov-chain model are similar to those obtained from an SSF model. This section compares the
predictions of these two models. The gas phase results used to compute the statistics were based on the MTS
model for turbulence closure. In the SSF model, the gas fluctuating velocity vector is sampled from the solution
of second-order algebraic relations (23).

The particle mean velocity predictions using the Markov-chain model and the SSF model are compared
with the experimental data infigure 12. The figure shows the three velocity components at three different
axial locations inside the reactor. The solid lines represents the predictions obtained by using the Markov-chain
model; the dashed lines correspond to the SSF model predictions. The figure shows remarkable correspondence
between the two models. Comparison with experiments for both models is also good.

The particle axial, and radial fluctuating velocity results at three different axial locations (z = 52, 115, and
195 mm) are shown infigure 13. The figure shows discrepancies between the predictions and the experiments.
Despite these discrepancies, it appears that the predictions follow the trends observed in experiments involving
the rms fluctuating velocity profiles. Inside the CRZ, both models overpredict the axial fluctuating velocity near
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Figure 12. Direct comparison between the experiments and the predictions obtained using the Markov-chain model and the SSF model for the particle
mean velocities at three different axial locations. Experiment:�. Simulation: ——–, Markov-chain model; – – –, SSF model.

the centerline, and underpredict it near the reactor wall. The particle rms radial fluctuating velocity results show
that the models generally underpredict this component of the velocity. Sommerfeld et al. [44] also observe such
discrepancies.

The particle rms fluctuating velocity results shown infigure 13seem to indicate that the differences observed
in the predicted gas rms velocities (seefigure 8) have little impact on these particle statistics. This is because the
Markov-chain model is based on the turbulence isotropy assumption (19), while the SSF model uses algebraic
relations to sample the gas fluctuating velocity (23). Shirolkar [39] confirms that the particle statistics (both
mean and fluctuating) obtained from the SSF model are generally insensitive to whether (19) or (23) is used to
sample the gas fluctuating velocity.

In summary, unlike the previous study using the PDFP approach (Shirolkar and McQuay [4]), the particle
predictions presented in this study cannot conclusively show any improvements compared to those obtained
using eddy lifetime concept. Such observation is not surprising because the particle predictions are strongly
dependent on the gas phase predictions. In the previous study the gas turbulence was carefully characterized
in the experiments (Snyder and Lumley [5]; Wells and Stock [6]). Thus, it was possible to focus on the
differences in the particle dispersion modeling techniques itself. Also, in the previous study the experiments
were conducted in a simple flow and hence had the advantage of taking precise, monosized dispersion
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Figure 13. Direct comparison between the experiments and the predictions obtained using the Markov-chain model and the SSF model for the particle
axial and radial fluctuating velocities at three different axial locations. Experiment:�. Simulation: ——-, Markov-chain model; – – –, SSF model.

measurements. The flow modeled in this study was complex and the predictions were averaged over the entire
size spectrum in order to compare with the available experimental data. In conclusion, the results of this study
demonstrate the ability of the PDFP approach to correctly and efficiently model particle dispersion in practical
two-phase flows using turbulence models which are applicable to real systems.

4. Concluding remarks

A computationally efficient approach to dispersion modeling that has been successfully demonstrated
in turbulent, swirling flows calculates particle ensemble mean trajectories instead of individual particle
trajectories. In this model, the particle positional variances are calculated along the mean trajectories, assuming
turbulence isotropy. The particle source terms (momentum exchange) are distributed to the carrier phase, which
is based on the predicted number particles in a given Eulerian computational cell. This approach has been shown
to be more computationally efficient than the standard stochastic dispersion model based on the eddy lifetime
concept.
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The above technique was validated with the help of the experiments of Sommerfeld and Qiu [29]. The results
of the study show that the predictions of both the fluid phase and the particle phase statistics obtained from the
present model compared favorably to the experimental data. These predictions were also consistent with those
obtained using a stochastic model.

In fluid phase modeling, two different turbulence models were used in this study. The MTS model of Kim
and Chen [32] provided better overall predictions for the fluid phase mean velocities compared to the standard
k–ε model. Also, the MTS model appeared to better predict the important feature of swirling flows – the central
recirculation bubble.

The second-order algebraic relations of Rodi [45] were solved to provide improved estimates for the
Reynolds stresses. These estimates are required in the stochastic model to sample the instantaneous fluid
velocity vector acting on the particle. The results of the study show that the algebraic relations do provide
better estimates for the Reynolds stresses compared to the standard isotropic assumption. However, the results
further indicate that the predicted particle statistics are fairly insensitive to differences observed in the Reynolds
stresses as predicted by the algebraic relations compared to those obtained assuming turbulence isotropy.
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